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Abstract—Relay selection is a simple technique that achieves
spatial diversity in cooperative relay networks. However, for relay
selection algorithms to make a selection decision, channel state
information (CSI) from all cooperating relays is usually required
at a central node. This requirement poses two important chal-
lenges. Firstly, CSI acquisition generates a great deal of feedback
overhead (air-time) that could result in significant transmission
delays. Secondly, the fed back channel information is usually
corrupted by additive noise. This could lead to transmission
outages if the central node selects the set of cooperating relays
based on inaccurate feedback information. In this paper, we
introduce a limited feedback relay selection algorithm for a
multicast relay network. The proposed algorithm exploits the
theory of compressive sensing to first obtain the identity of the
“strong” relays with limited feedback. Following that, the CSI
of the selected relays is estimated using linear minimum mean
square error estimation. To minimize the effect of noise on the
fed back CSI, we introduce a back-off strategy that optimally
backs-off on the noisy estimated CSI. For a fixed group size,
we provide closed form expressions for the scaling law of the
maximum equivalent SNR for both Decode and Forward (DF) and
Amplify and Forward (AF) cases. Numerical results show that
the proposed algorithm drastically reduces the feedback air-time
and achieves a rate close to that obtained by selection algorithms
with dedicated error-free feedback channels.

Keywords—Relay selection, Multicast, Feedback, Decode and
Forward, Amplify and Forward, Compressive Sensing.

I. INTRODUCTION

The increasing demand for mobile and live streaming
applications has triggered great interest in relay-aided multicast
networks [1]-[7]. In relay-aided multicast networks, a relay
forwards the source’s packets to a pool of users interested in
the same content. Relaying techniques can be classified, based
on their forwarding strategy and required processing at the
relay terminals, as decode and forward (DF) or amplify and
forward (AF) [5]-[7]. In DF relaying, the relay decodes the
source packet, prior to re-encoding and transmitting it to the
destination, whereas in the AF relaying, the relay amplifies
and retransmits the received packet without decoding it. Oc-
casionally, a relay may have poor channel conditions to either
the source or the users or both, therefore, the source has to
employ selective relaying techniques that take advantage of the
nature of the fading channel and preserve the diversity gains
of relay networks [8]. In selective relaying, the source selects
a single relay, among multiple relays, with a relatively good
channel condition to forward its packets to a group of users.

Fig. 1. Multicast network model with multiple relay nodes and users.

To achieve this, all relays feed back their minimum equivalent
(source-relay-user) signal-to-noise ratio (SNR) to the source.
This results in significant transmission delays (especially for
a large number of relays) since more resources have to be
allocated for feedback traffic rather than data transmission.

In this paper, we propose a relay selection algorithm that
minimizes the feedback air-time under the assumption of noisy
feedback channels. To the best of our knowledge, this is the
first paper that studies feedback reduction and throughput
scaling for relay-aided multicast networks. We exploit the
theory of Compressive Sensing (CS) to reduce the feedback
air-time of opportunistic relay-aided multicast networks. In
addition to this, we derive closed form expressions for the
scaling laws of the asymptotic maximum equivalent SNR
and achievable rate for decode and forward and amplify and
forward relaying protocols.

The remainder of this paper is organized as follows. In
Section II, we introduce the network model. In Section III,
we discuss our proposed feedback algorithm and an important
CS result relevant to our work. In Section IV, we evaluate the
performance of the proposed selection algorithm. In Section
V, we provide some simulation results, and we conclude our
work in Section VI

II. NETWORK MODEL

The network we consider consists of one source, R relays
and N ≪ R users as shown in Fig. 1. All users are assumed
to be equally important and the source uses only one relay
to broadcast its packets to all group users. An outage is
declared if one or more users can not decode the relayed
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packets. The channels from the source to the relays and from
the relays to the users are modeled as independent Rayleigh
fading channels. We assume a symmetric time-division-duplex
(TDD) setup where the channel gains remain constant during
the feedback. We denote by fr and gr,n the complex channels
between the source and the rth relay, and the rth relay and
the nth user respectively. fr and gr,n are assumed to be
independent and identically distributed (i.i.d.) zero-mean and
unit-variance complex Gaussian random variables. All relays
are assumed to by synchronized and additive white Gaussian
noise with zero mean and variance σ2 is assumed at each
receiver.

A. Cooperation Model

We assume that the channels from the source to all users
are weak enough so that all transmissions form the source
to the users are neglected and transmission must take place
in a two-hop fashion. To achieve this, the source selects a
relay that maximizes the receive SNR for the worst user. To
select the “best” relay, all relays estimate their equivalent SNRs
with the source and the N users, and then feed back their
minimum equivalent SNR to the source. Following that, the
source selects the relay with the largest equivalent SNR to
broadcast its packets to the group users. We elaborate on those
two steps in the sequel.

1) SNR Estimation: Regardless of the relaying technique
(DF or AF), all relays estimate their first and second hop
channels. Prior feedback, the source and users broadcast or-
thogonal pilots to all relays. The estimation error analysis is
beyond the scope of this paper, and thus, we assume perfect
SNR estimation at the relay side. Having the two hop channels,
the rth relay calculates its two hop equivalent SNR γe

r , which
depends on the relaying technique (DF or AF), as follows [9]

γe
r =







min
(

γr,minn∈{1,...,N}(γr,n)
)

, for DF protocol

min
n∈{1, ..., N}

γrγr,n

γr+γr,n+1 , for AF protocol

(1)
where γr = Ps

σ2 |fr|2 is the instantaneous source-relay SNR of

the rth relay and γr,n = Pr

σ2 |gr,n|2 is the instantaneous SNR
between the rth relay and the nth user. Ps is the maximum
source transmission power and Pr is the rth relay maximum
transmission power. The following lemma characterizes the
CDF of the equivalent SNR.

Lemma 1: The CDF of the equivalent SNR in (1) is given
by

Fγe
r
(x) =







1− exp
(

−x
(

1
γ̄r

+ N
γ̄d

))

, (DF)

1− 2x
√

N
γ̄rγ̄d

e
−x

(

1
γ̄r

+ N
γ̄d

)

K1

(

2x
√

N
γ̄rγ̄d

)

, (AF)

(2)

where γ̄r and γ̄d represent the average signal to noise ratio at
the relays and the users respectively, and K1 (.) denotes the
first order modified Bessel function of the second kind.

Proof: See Appendix A for proof.

B. SNR Feedback Phase

After estimating their equivalent SNRs, only strong relays
will be able to access the shared feedback channel which

is assumed to be slotted (into M mini-slots). During each
feedback channel (mini-slot), strong relays simultaneously feed
back to the source. Each relay normalizes its transmission
by its source channel, i.e. scales its transmission by 1

fr
, and

combines its equivalent SNR with its allocated feedback code
and transmits the combination to the source. Let v ∈ R

R×1

be the vector representing the relays’ equivalent SNR vector,
B = [b1 b2 ... bR], where the vector br ∈ R

M×1,
represent the relays’ feedback code matrix, and the vector y
represent the signal received at the source. We can then write
the received vector y as follows

y = Bv +w, (3)

where the vector w ∈ R
M×1 represents the additive noise

at the source. From y, the source obtains an estimate of the
SNR vector v, using CS theory as shown in the following
section, and selects the relay with the highest equivalent SNR
to broadcast its packets to the users.

III. OPPORTUNISTIC RELAY SELECTION

A. Compressive Sensing

The concept of “sensing” a sparse signal through multi-
plication by an appropriate random matrix has been termed
compressive sensing, and has recently gained popularity in
many applications [10]-[16]. CS theory permits efficient re-
construction of the sensed signal with only a few sensing
measurements. While there are many different methods used
to solve sparse approximation problems (see e.g., [10]-[13]),
we employ the least absolute shrinkage and selection operator
(LASSO) as a recovery method as outlined in [11]. The
choice of LASSO is due to the availability of a closed-form
expression for the probability of sparsity pattern detection in
the presence of noise. This probability term is essential for
analyzing the performance of the proposed selection algorithm.
Now, consider the following linear model

y = Bv +w, (4)

where B is a real M × R sensing matrix, v is a real R × 1
sparse vector1, and ω is a real M × 1 vector of independent
stochastic errors with zero mean Gaussian entries and variance
σ2. The LASSO estimate is defined as the solution to

arg min
ν∈RR×1

1

2
‖y −Bν‖2l2 + δσ‖ν‖l1 , (5)

where ‖.‖l1 and ‖.‖l2 represents l1 and l2 norms, respectively,
and δ is a regularization parameter. Given the following
assumptions: (i) The matrix B is a real Gaussian matrix with
unit normed columns and i.i.d. entries, (ii) minr∈S |vr| >
8σ

√
2 logR, where S = {r : vr 6= 0} is the support of

v, and (iii) δ = 2
√
2 logR, then for relatively large R, and

M > CS logR, where C is a positive constant (set as C = 2
throughout this paper), the LASSO estimate identifies all non-
zero entries of v with probability [11]

Pcs(S) ≥ 1− 2R−1

(

1√
2π logR

+
S

R

)

. (6)

1A sparse vector is defined as a vector (of length R) that contains S non-
zero entries such that S ≪ R.
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B. Proposed Relay Selection Algorithm

The goal of the proposed selection algorithm is to select
the relay with the highest equivalent SNR and estimate its fed
back SNR with minimal feedback air-time. In what follows,
we provide a detailed discussion on the different stages of the
proposed relay selection algorithm.

1) Relay ID Estimation: Instead of allocating each relay
a dedicated feedback mini-slot, all relays share a pool of
M ≪ R mini-slots for feedback. Each relay is allocated a
Gaussian codeword of length M for use during the feedback
phase. The Gaussian codewords are perfectly known at the
source and are drawn from the columns of a normalized real
Gaussian matrix with zero mean and i.i.d. entries of variance
1
M . To be able to apply the theory of CS, the fed back SNR
vector should be sparse. To satisfy this condition, feedback
is requested from only a few relays with an equivalent SNR
higher than a threshold ζ. As a result, only a few relays
will feed back. The choice of threshold is made to yield a
small outage probability P0. Using the CDF of the equivalent
SNR given in (2), we can easily show that Po = [Fγe (ζ)]R.
Therefore, the threshold ζ can be calculated as follows

ζ = F−1
γe

(

P
1/R
0

)

, (7)

where F−1
γe (.) is the inverse CDF of the equivalent SNR.

Once the source receives feedback from all strong relays, it
applies the LASSO (see (5)) and estimates the IDs of the relays
that fed back. If no relay is detected, a scheduling outage is
declared. If at least one relay is detected, the source performs a
subsequent SNR estimation and refinement steps as discussed
below.

2) Equivalent SNR Estimation: Once the source estimates
the sparsity pattern of v (or the identity of the strong relays),
it prunes the columns of B that are associated to the inactive
relays to obtain BS ∈ R

M×S . Hence, the received vector y in
(3) can now be written as

y = BSvS +w (8)

where vS is obtained from the vector v by removing the entries
associated with the inactive relays. Since M > S, the source
can easily estimate the entries of v. In particular, one can write
the linear minimum mean square error estimate (LMMSE)
after CS recovery as [18]

vLMMSE
S = BT

S (BSB
T
S +

σ2

σ2
v

I)−1y = vS + e (9)

where the superscript T stands for the transpose operation,
σ2
v = |vr|2r∈S

is the expected rth relay feedback power, and

σ2 is the noise variance at the source. Here, the entries of
the output noise vector, e, are Gaussian as linear operations
preserve the Gaussian noise distribution2. Following [14], we
can show that the variance of e is given by

• For S = 1,

σ2
e ≤ σ2

v

ρ−M/2e1/2ρ

2M/2
Γ(1−M/2, 1/2ρ), (10)

2While the elements of e are not necessarily independent, we will not use
this fact in our back-off calculations (see Section III-C). Therefore, the back-
off analysis here is pessimistic. This will result in a larger back-off and a
small hit in the achievable throughput.

where ρ =
σ2
v

σ2 , and Γ(., .) is the incomplete gamma
function.

• For S = 2, the upper bound is shown in equation (11).

• When S and M tend to infinity such that S/M →
β ∈ [0, 1],

σ2
e ≤ σ2

v

1 + ρM
(

1−
√
β
)2 . (12)

C. SNR Back-Off

Due to the presence of additive noise in the feedback links,
the estimated equivalent SNR in (9) might be higher or lower
than the actual one. An estimated SNR larger than the actual
SNR is problematic as it results in a transmission rate larger
than the rate that can be supported by the minimum SNR user.
Therefore, due to noisy feedback links, there is a need to back
off the noisy recovered SNRs based on the noise variance. For
each entry of the SNR vector in (3), a representative scalar
equation takes the form SNR′ = SNR + e, where SNR and
SNR′ stand for the actual and noisy SNRs, respectively, and e
represents the Gaussian noise. Now, if we consider a back-off
on the received SNR by an amount ∆, i.e. SNR′ = SNR+e−
∆, then, the back-off efficiency η, i.e. the probability that this
backed off SNR is less than or equal to the actual fed back SNR

is given by η = Pr[SNR′ ≤ SNR] = Pr[e ≤ ∆] = 1−Q
(

∆
σe

)

,

where σe is given by (10)-(12) and a proper choice of ∆ is
discussed in Section IV-B.

IV. PERFORMANCE ANALYSIS

For the performance analysis, we consider the following
metrics: 1) Feedback air-time, 2) Achievable rate, and 3)
Achievable throughput.

A. Feedback air-time

The feedback air-time L, is defined as the average number
of feedback mini-slots required to make a selection decision.
In the proposed algorithm, N + 1 mini-slots are required for
all relays to estimate their channels with the source and the
N ≪ R users, and M mini-slots are required by the source
to select the cooperating relay. Therefore, the total feedback
air-time is

L = M +N + 1 > 2S̄ logR+N + 1, (13)

where S̄ = E (S) is the average number of relays that report
an equivalent SNR above the broadcasted threshold. The value
of S̄ is determined by the broadcasted threshold which is a
function of P0 (see (7)).

B. Achievable Rate

In this section, we evaluate the rate achieved by the
proposed selection algorithm for both DF and AF cases. The
achievable rate T depends on: (i) the back-off efficiency,
(ii) the scheduling outage probability, and (iii) the success
probability of the LASSO. Therefore, T is derived as follows

T ≥ 1

2

(

log2 (1 + γ −∆)

)(

1−Q

(

∆

σe

))(

1− Po

)

×
(

1− 2R−1

(

1√
2π logR

+
S̄

R

))

, (14)
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σ
2

e ≤
σ2

v

(M − 1)!(M − 2)!

(∫

∞

0

λM−2,λe−λ

1 + ρλ
Γ(M + 1)dλ− 2

∫

∞

0

λM−1e−λ

1 + ρλ
Γ(M,λ)dλ+

∫

∞

0

λMe−λ

1 + ρλ
Γ(M − 1, λ)dλ

)

. (11)

where the inequality is due to the probability of CS detection
shown in (6), the multiplication by 1

2 is due to the half
duplex operation, and γ = maxr=1,2,...,R (γe

r) is the maximum
equivalent SNR, which we will give its scaling law for the DF
and AF cases in the following lemma.

Lemma 2: Let µ = 1
γ̄r

+ N
γ̄d

and v = 2
√

N
γ̄rγ̄d

.

Then as R → ∞, the maximum equivalent SNR γ =
maxr=1,2,...,R (γe

r) for DF and AF respectively scales as

γ =















µ−1 (ξ + logR) ,DF relaying
(

ξ + log

√

πv(µ+v)−1

2 + logR+ log
√
logR

)

× (µ+ v)−1 ,AF relaying
(15)

where ξ = 0.577 is the Euler constant.

Proof: See Appendix B for proof.

In Fig. 2, we plot the mean of the maximum equivalent
SNR γ for different values of the average SNR per hop. As
shown in the figure, for large R (R = 104), the numerical
mean of the maximum equivalent SNR for both the DF and
AF cases matches the theoretical results derived in (15).

It now remains to find an optimal value of ∆ that maxi-
mizes the rate in (14). To achieve this, we differentiate T in
(14) with respect to ∆ and set the resulted derivation to zero.
This yields
(

1 + γ −∆√
2πσe

)

exp

(

− ∆2

2σ2
e

)

log(1 + γ −∆) +Q

(

∆

σe

)

= 1.

Solving this equation numerically, one can find the optimum
∆ as a function of σe.

C. Achievable Throughput

In Section IV-B, we assumed the amount of air-time
consumed during feedback transmission to be negligible. This
is not generally a realistic assumption. To take into account
the feedback air-time we define the throughput as the total
achievable rate per feedback mini-slot. Using (14), the average
throughput of the proposed algorithm is

U = T/L,

where T and L are derived in (14) and (13) respectively.

V. SIMULATION RESULTS

In this section, we simulate the proposed selection algo-
rithm under the assumption of a noisy feedback channel. For
demonstration purposes, we only study the performance of
the proposed algorithm in a network employing multiple DF
relays. The proposed algorithm can be easily applied to a
network with multiple AF relays. We compare the proposed
algorithm with the noiseless dedicated feedback algorithm
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Fig. 2. Theoretical and numerical values for the expected value of the
maximum equivalent SNR versus the average SNR per hop. R = 10

4 relays,
γ̄r = γ̄d , and N = 5 users.
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Fig. 3. Achievable rate versus the number of relays R. S̄ = 5, γ̄r = γ̄d = 20

dB, and N = 5 users.

where all the relays feed back their equivalent SNR in in-
dependent mini-slots. Unless otherwise specified, we assume
M = 2.3S̄ logR in all simulations.

In Fig. 3, we plot the rate achieved (with and without SNR
back-off) by the proposed algorithm for different values of
R. As shown in Fig. 3, the rate (with LMMSE refinement
and optimum SNR back-off) achieved by the proposed algo-
rithm approaches the rate achieved by the noiseless dedicated
feedback algorithm for all values of R. When no back-off
is performed, the figure shows a hit in the achievable rate.
The reason for this is that noise at the source might result
in an estimated SNR larger than the equivalent SNR of the
worst user. In that case, an outage is declared. The proposed
algorithm optimally backs off to minimize over estimation
errors.

In Fig 4, we plot the feedback air-time (in mini-slots) for
different values of R. For the noiseless dedicated algorithm, the
feedback grows linearly with the number of relays R, whereas,
in the proposed algorithm, the feedback air-time grows loga-
rithmically with R. As the feedback air-time increases, the
throughput decreases as shown in Fig. 5, and as a result, the
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proposed algorithm out-performs the noiseless dedicated feed-
back algorithm. The achievable throughput for the noiseless
dedicated feedback algorithm decreases dramatically with R
when compared to our proposed algorithm. This is due to the
high feedback air-time requirement of the dedicated feedback
algorithm when compared to the proposed feedback algorithm.

VI. CONCLUSION

In this paper, we introduced a generic CS-based feedback
algorithm for relay selection in a multicast network. The
proposed algorithm, with noisy feedback estimates, is shown to
reduce the feedback air-time required to select a broadcasting
relay and achieve a rate that compares favorably with ideal
noiseless dedicated feedback algorithms. For large number of
relays, the throughput achieved by the proposed algorithm is
shown to outperform the throughput achieved by dedicated
feedback algorithms. Using extreme value theory, we derived
the scaling laws of the equivalent SNR at the receiver for both
DF and AF cases. We also showed that noise in the feedback
links introduces a hit in the achievable rate. To minimize the
effect of this noise, we introduced a back-off strategy that
optimally backs off the noisy estimated SNRs.

APPENDIX A

DERIVATION OF THE CDF OF THE EQUIVALENT SNR

In this Appendix, we proof the CDF of the equivalent
SNR given in (2). For the DF case, we can see from (1) that

the equivalent SNR is the minimum between two exponential
random variables γr and γ2 = min

n∈{1, ..., N}
γr,n with mean γ̄r

and
γ̄d

N respectively. Therefore,

Fγe
r
(x) = 1− Pr(γr ≥ x)Pr(γ2 ≥ x) = 1− e

−x
(

1
γ̄r

+ N
γ̄d

)

.

For the AF case, as shown in (1), the N SNRs are not
necessarily independent, therefore, to determine the CDF of the
equivalent SNR, we need to condition on γr and then integrate
over its range. Assuming high SNR,

γrγr,n

γr+γr,n+1 ≈ γrγr,n

γr+γr,n
[9].

Hence,

Pr (γe
r ≤ x|γr) = 1−

∏N
n=1 Pr

(

γrγr,n

γr+γr,n
≥ x|γr

)

(16)

= 1− Pr
(

γrγr,n

γr+γr,n
≥ x|γr

)N

, (17)

since all the relay-destination SNRs are identically distributed.
Integrating over all range of γr, we have

Fγe
r
(x) = 1−

∫ ∞

0

Pr

(

γrγr,n
γr + γr,n

≥ x|γr = t

)N

fγr
(t) dt

= 1−
∫ ∞

x

Pr

(

γr,n ≥ tx

t− x

)N
1

γ̄r
exp

(

− t

γ̄r

)

dt

= 1−
∫ ∞

x

1

γ̄r
exp

(

− t

γ̄r
− Ntx

γ̄d (t− x)

)

dt

(18)

With the change of variables, θ = t− x, (18) becomes

Fγe
r
(x) = 1−

∫ ∞

0

1

γ̄r
exp

(

−θ + x

γ̄r
− N (θ + x) x

γ̄dθ

)

dθ

= 1− e
−x

(

1
γ̄r

+ N
γ̄d

) ∫ ∞

0

1

γ̄r
exp

(

− θ

γ̄r
− 4Nx2

4γ̄dθ

)

dθ

(19)

Using [17] (p. 337), we get

Fγe
r
(x) = 1− 2x

√

N

γ̄rγ̄d
e
−x

(

1
γ̄r

+ N
γ̄d

)

K1

(

2x

√

N

γ̄rγ̄d

)

.

(20)
This completes the proof of the lemma.

APPENDIX B

LIMIT BEHAVIOR OF MAXIMA

In this section, using extreme value theory, we introduce
three extreme value distributions that are useful for the proof
of the Lemma 2. Consider the stochastic behavior of the max-
imum X∗

R = max(x1, x2, ..., xR) of R identically distributed
random variables x1, x2, ..., xR with CDF F (x). The CDF of
X∗

R is

F (X∗
R) = Pr(X∗

R ≤ x) = Pr(X1 ≤ x, ..., XR ≤ x, )

=

R
∏

r=1

Pr(X1 ≤ x) = [F (x)]R
(21)

Now, if there exits constants aR and bR such that

Pr
(

X∗

R−bR
aR

≤ x
)

= [F (aRx+ bR)]
R → G (x) as R → ∞

at all continuity points of G (x), then G (x) falls into one of
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the following distributions [19]:

(i) (Frechet) G1 (x;α) = e−x−α

u (x), α > 0
(ii) (Weibull) G2 (x;α) = e−(−x)αu (−x), α > 0
(iii) (Gumbel) G3 (x) = e−e−x

, α > 0,
where u(.) is the step function. To find the scaling law of γ in
Section IV-B, we need to find sequences aR and bR such that
Fγ(aRx + bR) → G (x) as R → ∞ at all continuity points

of G (x). For the DF case, if we let aR =
(

γ̄rγ̄d

Nγ̄r+γ̄d

)

, and

bR =
(

γ̄r γ̄d

Nγ̄r+γ̄d

)

logR, then we have

Fγ(aRx+ bR) =

[

1− e
−(aRx+bR)

(

1
γr

+ N
γd

)
]R

=

(

1− 1

R
e−x

)R

→ G3(x) = e−e−x

,

which is the Gumbel distribution. Evidently, its mean is
E[aRx + bR] = aRξ + bR. Therefore, as R → ∞, the
expected value of the maximum equivalent SNR achieved
by R i.i.d. relays operating under DF protocol scales as

γ →
(

γ̄r γ̄d

Nγ̄r+γ̄d

)

(ξ + logR) . For AF relaying, recall that

K1 (x) ≈
√

π
2xe

−x for high x (or high SNR). Therefore, under
high SNR assumption, the CDF of γe

r can be approximated by
(see (2))

Fγe
r
(x) ≈ 1− 2x

√

N

γ̄rγ̄d
e
−x

(

1
γ̄r

+ 1
γ̄d

)

√

√

√

√

π

4x
√

N
γ̄rγ̄d

e
−2x

√

N
γ̄rγ̄d

≈ 1−
√

πυx

2
e−(µ+υ)x,

(22)

where υ = 2
√

N
γ̄r γ̄d

and µ =
(

1
γ̄r

+ N
γ̄d

)

. Using (22), the CDF

of γ = max(γe
1 , ..., γ

e
R) can be expressed as follows

Fγ(x) =

[

1−
√

πυx

2
e−(µ+υ)x

]R

. (23)

To find the scaling law of γ, we need to find sequences aR and
bR such that Fγ(aRx+ bR) → G (x) as R → ∞ at all conti-

nuity points of G (x). By choosing aR = (µ+ υ)
−1

and bR =

(µ+ υ)
−1

(

log
√

πυ
2 (µ+ υ)

−1
+ logR+ log

√
logR

)

, (23)

becomes

[Fγ (aRx+ bR)]
1/R = 1−

(πυ

2
(µ+ υ)

−1
)1/2

×



x+ log

√

πυ (µ+ υ)
−1

2
+ logR+ log

√

logR





1/2

× e−x−log

√

πυ(µ+υ)−1

2 −logR−log
√
logR

= 1−



x+ log

√

πυ (µ+ υ)−1

2
+ logR + log

√

logR





1/2

× 1

R

1√
logR

e−x

= 1− 1

R
e−x

√

√

√

√ x

logR
+

log

√

πυ(µ+υ)−1

2

logR
+ 1 +

log
√
logR

logR
.

(24)

When R → ∞, (24) becomes

Fγ (aRx+ bR) =

(

1− e−x

R

)R

→ e−e−x

= G3 (x) . (25)

Therefore, as R → ∞, the expected value of the maximum
equivalent SNR scales as

γ → (µ+ υ)
−1

(

ξ + log

√

πυ

2
(µ+ υ)

−1
+ logR+ log

√

logR

)

.

This completes the proof of the lemma.
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